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Collective flux creep: Beyond the logarithmic solution
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Numerical studies of the flux creep in superconductors show that the distribution of the magnetic field at any
stage of the creep process can be well described by the condition of spatial constancy of the activation energy
U independently on the particular dependencdJobn the fieldB and currenfj. This results from a self-
organization of the creep process in the undercritical gtatg. related to a strong nonlinearity of the flux
motion. Using the spatial constancy Of one can find the field profileB(x), formulate a semianalytical
approach to the creep problem and generalize the logarithmic solution for flux creep, obtaibeddd), to
the case of essential dependencé&Jadn B. This approach is useful for the analysis of dynamic formation of
an anomalous magnetization cur¢#ishtail” ). We analyze the quality of the logarithmic and generalized
logarithmic approximations and show that the latter predicts a maximum in the creep rate at short times, which
has been observed experimentally. The vortex annihilation limethe sample edge for the case of remanent
state relaxation where B=0, cause instabilitiegflux-flow regiong and modify or even destroy the self-
organization of flux creep in the whole samp80163-18268)02842-3

I. INTRODUCTION possibility implies that the fishtail effect should disappear at
shorter time windows or lower temperatures where the effect
Since the discovery of the giant vortex crédp high-  of relaxation is negligible angl=]j.°
temperature superconductoldTSC), it has become clear  After the instantaneous switching on of the external field
that the relaxation processes in these compounds may b the flux-flow process develops towards establishing a
very rapid compared to usual low-temperature superconduckearly critical profilej=j.(B), where the Lorentz forcej{
ors. The magnetization curreptand, in turn, the magnetic X ¢bo)/c is compensated by the pinning forcéis the flux
momentM, which is approximately proportional an most  guantum andt is the velocity of lighi all over the sample.
cases, drop considerably during the usual experimental tim@sually the duratiorry, of flux flow does not exceed a few
windows of a few hourgor even lessdown to small values milliseconds(see Ref. 10 and references theyeits j drops

L f?tféél@u??erﬂ(t:u\l/?r:,ic? g:si\éa(;fdt;gr?geiﬁgjsretfﬁng; t?.e below j., the slow process of flux creep starts. The creep
’ 9 by rate is mostly determined by the Boltzmann factor

<j.) characterized by the Boltzmann factor exp{/kT), exp(—U/KT), whereU=U(B, ). Of course,U depends also

whereU(B,],T) is the activation energy for flux creep, and on temperature, but the creep experiments are usually con-
the nonactivationaflux flow(j>j.) with U=0. Due to such P ! P exp Y
ducted at constant temperature. In many cases the depen-

a pronounced relaxation, bojhand M are determined in R ;
HTSC mostly by the flux dynamics in contrast to conven-dence ofU on B can be neglected, which implies a crucial

tional superconductors where relaxation is usually very slowSimplification for the theoretical description of flux creep.
soj=j, for any accessible time windows. This has given rise0r instance, in an infinite slab of widtrlX —d<x<d) in
to an extensive study, both theoretical and experimental, dhe parallel external fieldd, the variation of the magnetic
magnetic relaxation and vortex dynamics in HT@6e Refs. induction 6B=B(d)—B(0) does not exceedi*, where
2—4 as reviews Most of them are based on the logarithmic H* = (4m/c)jd is the full penetration fieftt (j. is consid-
solution® ered to be field-independegnt~or H>H* one can neglect
6B=<H*. If both j. and d are sufficiently small, sayj.
=10* Alcm? andd=0.1 mm, therH* is of order hundreds
' @ of G. In this case the above condition is easily fulfilled for
most H, and the activation energy appears to be field-
wheret, is the logarithmic time scale for flux creep. We will independentU(j,B)=U(j,H). Then the field profile8(x)

U=KkTIn

1+ t
to

discuss Eq(1) in detail in Sec. Ill. are almost straigh*?i.e., j=const throughout the sample
A closely related problem is the so-called “fishtail” ef- at all creep stages.
fect, i.e., the anomalous increaseMbfas a function oH,® or However, in larger samplesi&1 mm) with strong pin-

the increase of locally measurgas a function oB.”® This  ning (j.>10°> Alcm?), one getséB=H*>1 T, which im-
effect serves as a test for different models of flux pinning ancgplies that the spatial variation & may not be small com-
creep. The crucial question is whether the nonmonotonougared toH. Of course this estimation may not be valid at
behavior ofj results from the same feature jp (“static high temperatures whelje drops. But for large and not too
fishtail”), or arises from a faster relaxation pht smallB, clean samples well below. the dependence df on B is
whereasj . is a monotonously decreasing function®fand  essential, and the field profiles are not straight. On the other
itself shows no anomaly“dynamic fishtail”). The latter hand, due to very fast relaxatid® can vary by orders of
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magnitude during experimental time windows of order ofdisregard the effects related to the latter.

hours(see, for instance, Ref.),7which also requires taking The flux creep is described by the diffusion equatidn:
the U(B)-dependence into account for the consistent de-

scription of the relaxation process, especially in the dynamic JB JD
models of the fishtail formation. =

)

The goal of this paper is to study the relaxation process N x
for various dependencies bfonj andB. In Sec. |l we show where
that the field profile at any stage of the relaxation process can
be described by the condition of spatial constancy of the é
activation energy: D=Bu =AC—:;BJ' exp — U/KT) (4)

U(x)=const (2
the magnetic flux current, is the vortex velocityy is the
ardeen-Stephen dragriction) coefficient® for flux flow
and A is a numerical factor. Note th&@ is proportional to
the electric fielde=(BXwv)/c in the sample. The form of the
magnetic flux currenD is chosen sucfi that atU=0 and
A=1 the flux velocityv corresponds to the Bardeen-Stephen
@expressiotf for the flux flow: v =vgow= doj/C7.

It has been already discus$etat the strongly nonlinear

throughout the whole sample, where const depends on tim
only. SinceU=U(B,j), Eq. (2) provides an implicit rela-
tionship betweerB and j, manifesting a condition o$elf-
organization of flux motion in the undercritical regim¢
<j.. In other words, according to EqR) the field profiles
form a one-parameter famil3,(x). The problem to be
solved in order to describe the flux creep is to find thes

profiles together with the dependencdbbn time. Note that ; . .
this case differs from the self-organized criticaligee the ~Ed- (3) should obey a self-organized behavior. This means

pioneering work® and further applications to the supercon- that |f a fluctuationép appears in the sample, it results in a
ductors in a critical statd), where the peculiarities of the Significant(exponential local change of the flux curreri2

flux motion (avalanches, critical exponents, gtare consid- =< &XP( U/KT) which, in turn, leads to fast smearing out of
ered in the vicinity of the critical stat¢=j. (i.e., atU :[‘he flu_ctua}:uon._ln other words_1,5u|:kT is the scale of
=0). The conditiorj = const found in previous studi®d2is permitted vz_irlatlons of U. This has b_een proved experi-
obviously just a particular case of E€) provided U is mente_llly k;y direct measurements lgfusmg the Hall prpbe
independent oB. In Sec. Ill we analyze numerically and, techniqué and shown theoretically for the linear
using Eq.(2), semianalytically the flux creep for various (Anderson-Kim dependenceJ(j)=j.—j, where an exact
U(B,})-dependencies, particularly for the most general colarabolic solution for the electric fieli(x,t)=D(x,t) was
lective creep behavidd<B®j ~#. We show that at short, but found.” It is worth mentioning that our model differs from
experimentally available time scales the creep process diffef§at used in Ref. 19, wherb =Dqexp(-U(j)/KT), by the
significantly from the logarithmic solutiofsee Eq(1)] and  actorj in the preexponential term of EG4) and, of course,
shows a maximum in the relaxation ratd)/d Int, in accor-  PY the dependence &f on B. ,

dance with the experimental data. The semianalytical solu- W& are interested in a general case of arbitrary depen-
tion provides a good approximation to the ex@mimerica) ~ dence ofU on B and j. Thus we suggest a more general
one at all time scales. In Sec. IV we apply these ideas to theriterion of self-organ-lzanon as follpws. Resu_ltlng from Eq.
problem of the anomalous magnetization cutfishtail) and (3, Fhe Io_ca! relaxation rat&B/dt is proportional to the
show how the dynamic development of the anomaly (ar spat|ql variation of the flux current densib; The latter can
the same, itM ) can be described semianalytically. In Sec. P& Written as

V we study the effect of so-called “annihilation lines” in

infinitely long samples, wher8 changes sign and vortices dD oD D

with opposite directions annihilate each other, on the self- oD = &_B5B+ (9_1-51 + m&-” )
organization of the flux motion. A particular case of such a

line is the edge of the infinitely long sample in the remaneniyhereB, j, andU are formally considered as three relaxing
state. The vortex velocity shows a peculiaritydivergence  parameters, though being mutually dependent, sibce

at such a line, resulting in the appearance of flux-flow re-= (B j) andB is related toj by Maxwell equations. If one
gions in the vicinity of the annihilation lines. We s_hOV\_/ that of the three terms in the right-hand side of E§). appears to
these peculiarities affect deeply the self-organization ohe considerably greater by absolute value than the other two
creep and the condition of spatial constancy tbfsee Eq.  terms, the corresponding parameter governs the relaxation
(2)] is modified or even destroyed in the whole samfaled  (ate9B/4t, and, in turn, relaxes itself towards its equilibrium

not only in the vicinity of the annihilation lings value[i.e., B—H, j—0, andU(B,j)—U(H,0)] irrespec-
tive of what happens with the other two. Generdlxcept
Il. SPATIAL CONSTANCY OF U maybe very specific types of dependendéB,j)] this

should lead to a self-organization of the flux diffusion pro-
cess which implies that the three terms in the right-hand side
of Eq. (5) tend to keep the same order:

Consider an infinite slab of thicknesdd A —d<\x<d)
with the magnetic fieldB(x) parallel toz-direction and the
currentj flowing alongy . The external fieldH is switched on
instantaneously when no vortices are present in the sample,
which corresponds to zero-field-cooled experiments. We Eé _dJD 5j= dD sU ®)

considerH>H_,, whereH, is the lower critical field, and B 9

Ju
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The above condition can be considered as a mutual confingB/st, revealed thatd=1. Thus, at least in the case of
ment for variations oB, j, andU. Taking the expression for single vortex pinning, Eq(10) is consistent with the equa-

D from Eq. (4), we get a limitation foréU: tion for flux flow:
ouU oB 6j
ﬁsmax[i,.—J] (7) @_ i b0 ﬁ 11)
J ot ox\4my  ox)’

Note that the above estimation does not require the condition
U>KT, i.e., it should hold starting from the very early stagessince the latter can be obtained from Ef0) at U=0 and
of flux creep. A=1.

If one of the three terms in Eq6) is very small (or The features of self-organized criticality in the solution of
abseni for any “external” reason, then the self-organization Eq.(10) have been analyzétifor the case of switching on of
applies to the two other ones. For instanceBifis much a small additional field5B on the background oB> 5B

greater tharH* and thuséB/B<1, we get already present in the sample, and for a spedifigarithmig
dependence of the activation energy on the currént:
oU dU & Ug 4§ g =Yoln(jo/)). In terms of the energy distributidd(x) across
KT 9j kKT kT j. ®  the sample the case considered in Ref. 17 implies that in the

o o i beginning the energy was very lar@@ infinite) in the whole
where U, is the characteristic activation energy fpr-0.  sample, sincgé =0, then an area of small appeared at the
Since in genera_lUc> kT, we getd] <(kT/Uc)jc<jc, ashas gqge (after switching ondB), and the propagation of this
already been discussed in Ref. 10. _ “fluctuation” of the U(x) profile was studied.

It is worth mentioning, however, that at the locations | contrast to Ref. 17 we consider below the instantaneous
where j=0 or B=0 the variations ofu may exceedkT  swjitching on or removal of the whole external fighd A sort
significantly, as follows from Eq(. 7). The first of these two  of self-organization, i.e., establishing of a “partial critical
conditions 450) regularly holds at the center of the sample gi5te722 with j(B)xj.(B) has already been reported for this
(x=0). For instance, the parabolic solution f0(x) (Ref.  case. We show below that this result follows from our more
19) shows the I_ogari_thmic divergem_:y of atx=0. We will general approach based on E2).if U=U[j/j.(B)], but for
commgnt on this point in the f.ollowmg Sec. II_I. The sgcond an arbitraryU (B, j)-dependence the partial critical state may
condition B=0) holds at the lines where vortices of differ- ot pe established. Our general results on self-organization
ent sign annihilate each other, or just at the edge of thgf the flux creep do not depend on the speclfi¢B,j)-
sample in the remanent state. We will devote special Sec. \'ﬂependence, but focus on the collective creep behavior
for the latter case. U(B,j)=B* ~*. We will not consider the time-dependent

Equations(7) and (8) prove the spatial constancy &  poyndary conditionsH=H(t). Some results for the latter
throughout the sample withkdr precision[see Eq(2)]. The  -55e can be found in Refs. 23 and 24.

analytical results based on E() we will refer below as The integration of Eq(10) can be performed as follows.
semianalytical” ones. Defining the magnetization as
I1l. ONE-DIMENSIONAL CREEP EQUATION 1 (d
e . m= — B—H)dx 12
In an infinite slab the current is related toB by the ZdI,d( ) (12
Maxwell law:
B and integrating Eq(10) over x, we get
c
j==5==, C)
o m_a Loy B —UegedKT),  (13)
—=A——H|— exp— ,
if one uses a reference systeayiz whereB||z andj|ly. For a at dmqpd | x| _ edg

platelet sample in a perpendicular external field, where the

in-plane field componeri, appears, the relation betwegn  where Ugee=U(x==d) is the activation energy at the
and B becomes more complicatéd” Here we focus on the edges of the slab. The constancy of the activation erjeegy

one-dimensional creep problem whég=0, soB,=B. Eq. (8)] means that)(x)=Ugg4ye=U over the most part of
After substituting Eq(9) into Eq. (3) one gets the basic sample except the very central regipi<d, which contri-
one-dimensional equation for flux motion: bution tom is negligible. Note that we do not perform any
averaging ofU(x) but just exclude the central region from
ﬁz 9 ﬂBﬁexp(—U/kT) (10) consideration. For the case of straight field profiles:
at  ox\"Amn ox ' |B/dx|=const one can rewrite Eq13) in a very simple

form:
The numerical coefficientd depends on the creep mecha-

nism and should not necessarily be of order of flitgee

also disc;ussiqn in Ref. _JOHowever, the_lovy field measure- a_mEATqu_ u/kT), (14)
ments (i.e., in the single vortex pinning regirein at T

YBa,Cw,0;_, crystalst® where Eq(10) was experimentally

studied by direct local measurements Bf 9B/dx, and  wherer=2mw7d?/ ¢oH.
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1 t
jEj*EX%E—;» t>17/2 (18

where /2= 7 5d?/ $oH is the time of full penetration in the
flux flow regime. Forj.<j* the time of establishing of the
critical profile after switching on the external field is
Tiow=1t(jc)=(7/2)(1+2 Inj*/j)=7 as follows from Eq.
(18).
by N S0 The crossover from the flux flow to flux creep process is
1.0 05 0.0 05 10 well defined, i.e., the critical profilg=j is established at
x/d t= 740w almost exactly throughout the whole samptee
Fig. 1(a)]. More exactly, the fluctuations &f which appear
in the whole slab at the crossover from flow to cregp (
=j.) are of orderkT according to Eq.(8), therefore §j
(b) 40+ s04 40 <(kT/U.)j.<j.. The only exclusion is the very center of
: the slab,x=0, wherej=0 andU shows relatively strong
30+ 30 variations, as we discussed in the previous section. However,
163 this area is narrow and can be neglected when considering
of— "~ 18 the profilesB(x) and magnetizatiom.
After the flux flow stage is completed, a much slower
oA 58 o process of flux creep starts, and various casds(&,j) can
1.6 be analyzed. First we consider the simplest case where

0 — =~ In(Uuey) =0.08 |, depends only of.
-1.0 0.5 0.0 05 1.0

x/d

B/H

U/KT

B. Creep atj.=const, U=U(j)

FIG. 1. (&) The field profilesB(x) for flux flow (dashed lines This case has been already studied in Refs. 10,12,22, and
and creep(squares for U=Uo[(jc/j)—1] with H*=H/2. The 25 Here we analyze it as a test for our numerical solution
critical state {=j) and the full penetration statej€j*) are  pafore consideration of more complicated model§/¢B, ).
shown in so!id black a'n.d gray lines, respectively. Note an almosburing the stage of flux creepj€j.) [see Fig. 1a)], the
exact formation of a critical state at the crossover flowreep.(b) e profiles are even more straight than during the flux flow
Spat_lal dependence df at different tlm_est/rﬂow. Note almost stagel,o'lz i.e., [j(x)|=const, and, in turnP(j(x))=const
spatial constancy of) except narrow regions=0. [see Fig. 1b)]. Note a very narrow increase ofJ atx=0,
wherej =0, which is consistent with the comment at the end
of Sec. Il

After switching on the external field, the flux flow starts SinceUgqqe=U over almost the whole sampléhe con-
and lasts until the vortices fill the sample up to the criticaltripution of the central regiofix|<d to m where the above
profile j.. Its durationy,, can be easily estimated if one condition no longer holds is negligibleone gets from Egs.
notices that already during the flow regime #x)-profiles  (13) and (16), using also Eq(9):
are almost straight, i.e.}j|=(c/4m)|dB/ix|=const [see

A. Flux flow (j>j¢)

dashed lines in Fig.(&)]. Using the straightness of the field du dU dj dm_ A |dU "
profiles, one can estimate the magnetizatioas dt  dj dmdt gy qj exp—U/KT). (19
cH2 This equation can be integrated numerically for any
m(j)=H- 87id for j>j*, (15) U(j)-dependence, and also can be solved with a logarithmic
w

accuracy5, see EQ.(1). The latter means that the real
U(j)-dependence is substituted by the tangent straight line
27jd o, with a slopedU/dj, as shown in Fig. 2, which is reasonable
c for j<j*, (160 since the relaxation slows down exponentiallylagrows.
Thus the system spends most of the relaxation time near the
Where the Currenjt* :CH/47Td Shown as a gray So”d |ine in final pOint WhereU(j) and |tS tal’lgent |il’le a|mOSt COinCide.
Fig. 1(a) discriminates between the incomplete and completdf we assume=0 at the crossover between flow and creep,
penetration of flux into the sample. Note that we have choseWherej=j. in the whole sample, then such an approximate
H>H*, whereH* =4mj.d/c is the field of full penetration. ~solution of Eq.(19) acquires the form of Eq(1) with
This means thaj.<j*, i.e., by the completion of the flux KT 2 md? T
flow stage, flux penetrates the whole samjsiee Fig. 1a)]. to= ™Y _ T (20)
Then, substituting these values into Et@) and solving it at O ldurdj| AgoiH  AjldUrdj|”
U=0 andA=1, we get

m(j)=

If one takest=0 at the moment of instantaneous switching
on the external fieldH, then, obviously, in Eq1) t should be

j=ij* \/z t< /2 17) replaced byt— ., - In the description of creep below we
2t uset=0 at the crossover flowtcreep. Note that instead of
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FIG. 2. Relaxation of can be imagined as a motion of a dot
along theU(j) curve (solid). For the logarithmic approximation
U(j) is substituted by its tangent lifdashedl Timet, corresponds
to the “motion” along the negative partU<0) of the line,
whereasry,,, corresponds to the “motion” fronj=« down toj
=j. alongU=0.

COLLECTIVE FLUX CREEP:

BEYOND THE ... 15071
T T T T T T T T
H12
—41.0
108 o
[
i~ 0s 3
) 2
a
E)
A "pure” logarithmic 194
] o straightforward
NS generalized logarithmic |4 0.2
o6 O exact (numerical)
T T T T T T T T T T T 1 0.0

25 30 35 40

In{Aut/7)

FIG. 3. Comparison of “pure” logarithmi¢triangles, straight-
forward (circles, and generalized logarithmisolid line) solutions
of Eqg. (19), which were derived under assumptith(x) = const,
together with the “exact” numerical solutiofsquarey of Eq. (10)
for U(j)=U.[(jc/j)*—1]. Open and filled symbols correspond to
U/KT andd(U/kT)/d Int, respectively. Note that all the solutions
except the pure logarithmic one show a maximundig/d Int at
Aut/r=1.

instantaneous switching on the external field can be swept

with a finite rateH. This leads to appearance of additional
term 7o e 1/H (Ref. 19 under the logarithm in Eql).

As becomes clear from Eql) and Fig. 2.t is the time
formally required to get frontd = — o (which corresponds to
t=—ty) to U=0 (which corresponds ta=0) along the
nonphysical part of the tangent line, corresponding to neg
tive U. Thusty has no direct physical meaning and should
not be mixed with the characteristic duratieg,,= 7 of flux
flow, see Eqs(17) and (18).

Equations(1) and (20) provide a logarithmic approxima-
tion for the time required for a system to reach the enéigy
However, in order to use Eq(l) to describe the
U(t)-dependence one observes thais not actually a con-
stant and depends dh (or the same, oh). This effect is not
of great importance atlU/dj=const, i.e., wherdJ is an
almost linear function of, but cannot be neglected in the
opposite case of strongly nonlinear dependencé) ain j,
wheredU/dj changes significantly.

Consider the case of the collective creep model

U:Uc[(jc/j)p'_l]a (21)

which is an example of such a nonlinear dependence. Her@4), since therdJ<U_, and, in turn;ity>t

the exponenj. varie$ from w=1/7 (single vortex creepto
wn=5/2 (small bundles The straightforward solution of Eq.

(19 then gives
~E KT/

where Ei is the integral exponential function. The logarith-
mic approximation for Eq(22) acquires the form:

U.+U
kT

t
—A,u;ex

U
Ei —=

kT

(22

t
U=kT|n(l+A,u,;(U+UC)/kT), (23

which, if compared with Eq(1), implies

7kT

b~ ZuUr Uy 24

If during the creep proceggecreases down {g,,<<j., then
the energy increases up t,,>U., whereU p,,=U(jmin),
andt, decreases down t§"=7kT/AuU .. Regularly, the
atter estimationto=t{"", is substituted into the logarithmic
solution Eq.(1), and time dependence fis neglected. This
results in an almost linear dependencédJabn In(t) (see Fig.

3). Let us call such an approximatidwheret, is treated as

a constantas a “pure” logarithmic solution, whereas Eqgs.
(23) and (24) provide a “generalized” one.

The straightforward solution and both generalized and
pure logarithmic ones are compared in Fig. 3. In the same
figure we show an exact numerical solution of EfQ) ob-
tained without any assumptions on spatial constancy.of
We usedr/Au as a useful time constant in Fig. 3. One
observes that the generalized logarithmic solution works at
all t, and together with the straightforward solution provide a
perfect fit to the exact one. On the other side, the pure loga-
rithmic solution shows significant deviations from the exact
one, especially at short times. This is consistent with Eq.
o™, Particularly,
the logarithmic solution misses the characteristic maximum
in the creep rateU/d Int which appears atlut/ 7=10. For
7=10"°glcm sec(Ref. 26 (which implies thatT is well
below T.), A=1, u=1/7 (single vortex creep andd=1
mm, the maximum indU/dInt appears at*=60H sec,
whereH is measured in Oe. Thus the maximum or at least its
tail can be resolved at experimentally accessible times. Note
that the numerical factor in the latter estimation growng?,
and for some larger samplé€$ can be significantly greater.
The position of such a maximum determined experimentally
can be used for determination of the parametér$ and w.

The above theoretical results are compared in Fig. 4 with
the experimental data obtained on a larggé=( mm)
YBa,Cu;0; crystal. The relaxation of the magnetic moment



15072 L. BURLACHKOV, D. GILLER, AND R. PROZOROV PRB 58

T T T T T T T 0.94
1.05
0.88
= FIG. 4. Experimentally obtained relaxation
% 0.83 rate d(U/kT)/dInt (triangles and normalized
o~ ' § magnetic momenM/M ., which is equal tg/j.
= 0.95 o (circles vst and their fit by the generalized loga-
5 rithmic solution at the same values of parameters:
0.7 AlT=0.03 sec?, U./kT=12.62, andu=2.03.
0.90
1 1 1 1 1 1 1 1 0.72
4 5 6 7 8 9 10 11 12 13
In(t)
was fitted by the direct numerical solution of E¢$4) and am AloB
(21), where7/ A, j., u, andU. were considered as indepen- = Ao exp(—U/KT), (27
x==*d

dent fitting parameters. Thud(t)-dependence is found di-
rectly from the experiment and is compared in Fig. 4 withand one gets an equation which determines the activation
the theoretical curve found from E(R2) with the same pa- energy:

rameters. The experimental and theoretical results almost co-

incide, and the characteristic maximumd(U/kT)/d Int at du AU, h
t=10r/ A s very clear. dt 7 2(h+u[h—b(0)—b(0)In(h/b(0))]
C. Creep atj.=const, U=Uy(B/By)(j./j—1) xexp(—U/KT), (28

Consider this simplest model dependenc&an B andj, = where we denotech=H/H*, b=B/H*, and u=U/U,.

which can mostly be analyzed analytically before a moreThis cumbersome expression can be reduced if one uses the
complicated case of collective creep. We have changed the
notationU instead ofU.., as in the previous subsections, for (a) o
reasons which are clarified below. Figure 5 illustrates the :
numerical solution foB(x) and U(x) profiles in the case.

One observes that the general conditlde=const holds in

this case as well as in the previous one, whHdreas inde- 0.8¢

g1.0

10.8

pendent ofB. The same narrow peak Ud is located at the %
center of the samplg=0, as described in Sec. Il. Sinté
depends only on the ratid,/B,, we can choos®, arbi- 061 0.6
trarily. It is most convenient to acceBy=H*. Then, using , o ,
the Maxwell equation9) and the conditiorlJ=const, one -1.0 -0.5 0.0 0.5 1.0
obtains the approximate expression for the field profile in the x/d
sample:
X 1+B_H+ U| B 25 (b) 50 p—mmm—— 50
d- " g% "UgH (25
40+ 140
Denoting the field at the center of the sampld3é8), which 30 130
is found from Eq.(25) atx=0, one can rewrite the magnetic K \ N J
momentm [see Eq(12)] as - 20 120
104V v 10
1(H N ]
m= - xdB. (26) 0+ —— —0
dJso) 1.0 05 0.0 0.5 1.0
Then x/d
FIG. 5. (@ The field profilesB(x) for flux creep atU
om_odmoU 1 T =Uq(B/H*)(jc/j—1) with H* =H/2 found by numerical solution
g oU at U nB(o) (0) ot - of Eq. (10) (squares and by the semianalytical approackolid

lines). (b) U(x) found for the sam&J(B,j) dependence from the
On the other hand, as follows from EQG.3), numerical solution of Eq(10).
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expansion over =[H—B(0)]/H, which becomes exact at (a)
A—0, but actually holds with 10% accuracy at worst for all
A<1, i.e., for allB(0)<H. Then one gets

dU_A
g7 U+Uo)

1+ gA) exg(—U/KT), (29

B/H

whereU.=hU,. This result differs from Eq(23) only by
the correction factor + 2A/3. This means that the results of
the previous subsection, wheltewas field independent, ap-
ply here just by accounting for the correction factor 1
+2A/3, which in most cases is not of great importance.

Equation (29) enables us to find th&(t)-dependence, (b)
and then, using Eq.25) we get the field profildB(x) as a
function of time, i.e., solve the creep problem completely.
We call such an approach a “semianalytical” solution. Its 0.2
results are compared in Fig(éh with the exact solution ob-
tained by a direct numerical integration of E40) with no
assumptions on constancy df One observed that the semi-
analytical solution, being much less time-consumjngte
that the solution of Eq(29) is quite universal and has been 0.0 . . :
already obtained in the previous subsecljqgrovides a per- 10 100 1000
fect fit to the exact description of the creep process. In(¥zow)

0.3

m/H

0.1+

FIG. 6. (a) The same as in Fig.(8 for the collective creep
D. Creep atj.=const, U=Uy(B/Bo)*(j./j)" (collective creep  dependencel =Uy(B/H*)*(j./j)* with a=1, u=2, and H*
This is the general dependence Wfon B andj in the =H/2. (b) Magn_etization_for the samB(B,j) dependence found
collective creep theoRyfor j<j.. The spatial constancy of rom the numerical solution of Eq10) (circles and by semiana-
U holds in this case as well as in previously consideredYtica! approactisolid line). Form/H<0.1 the circles and the line
cases. We have checked it numerically for variauand w. gomplgtely coincide. Noten/H=0.25 corresponds to a critical pro-
The conditionU =const together with the Maxwell equation file J=Je-

(9) determines the field profile: pendence of the activation energyonj in this model(com-

pared with the two previous cage3he factor in the square
h'—b’= L( X)' (30)  brackets in Eq(33) describes the effective renormalization
ube of U in the preexponential factor resulting from the depen-
dence ofU onB. If =0, which means thdt is independent
of B, then the renormalization disappears. The same happens
at B(0)—H. At a=u the correction factor reduces to 1
+2A/3, which is consistent with the previous case, where
a=pu=1.

In Fig. 6 we compare the direct numerical solution of Eq.
(10) with the semianalytical one determined by E@) and

d

where we denote=1—a/u and assum8,=H?*, as in the
previous case. Here we take# u (the casex= u is almost
identical to that considered in the previous subsegtidhe
field b(0) is determined, as follows from E@30), by h”
—b(0)"=v/u¥#. The magnetic moment can be calculated
using Eq.(26):

Up (31). Figure &a) shows the numericdlexac) B(x) profiles
m=H* h— ——(h"*1-b(0)"*Y)|, (31) compared with Eq(30), and Fig. b) showsm(Int), ob-
v+l tained numerically from Eq(10) and semianalytically from
and, using Eq(27), one gets Eqgs.(30—(33). The quality of the semianalytical approach is
perfect in this case as well as in the previous one.
In the most general case
dU_ Au(v+1) (h*1— b(0) g

dt — v—1,,2,

a2 U=Uq(B/Bo)“L(jo/)*~ 1], (34)
v -1/, -1

X(h"+u™ )] U exp(— U/KT). (32) one gets an expression which naturally conforms to E2.

This expression, being a bit cumbersome, can be reducednd(33):
using the expansion ové&r=(H—B(0))/H, which, as in the

previous case, works with reasonable accurdmstter than d_U: A_M n . 2_6! _

10%) at allB(0)<H: at (U+Up)|1 3,U~A exp(—U/KT), (35
du Au 2 where, as abovd),=hU,. We skip the cumbersome deri-
at - 7 Y ttg A e UKD, (33 vation of the last expression, which requires expansion over

A starting from the equation for the field profikx). The
This result is very similar to Eq29). The absence dfl; in  generalized logarithmic solution of this equation acquires the
Eq. (33) corresponds to the absence of terrd in the de- form
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AdoHu(U+U)[1+ (2a/3u)A L
U=kTinl 1+ hoH u( J[1+(2al3u) ]t 1 08} \
2w nd’kT N
(36)
which coincides with Eq(1) if =~
2w pd®kT H* 04r

o= AoHa(UT U1 2al3mA] 1w G0

where we introducetl,=ty(H=H*). Note thatt,, is almost
field independent, sinckl entersty only via A. Note that 0
botht, andt, depend on time vi&J and the correction term
(in square brackels

FIG. 7. Dynamic development of anomalous magnetization
(fishtail) found by the semianalytical solution of the Kim model
E. Creep atj.=j.(B)#const [see Eq(40)] with B.=2H*, a=1, andu=2. Relaxation starts at
t=0 from j.(H)=joB./(B.+H) shown as dashed line. Due to
faster relaxation at smaH an anomalous magnetization develops at

violate the general condition, E@), of self-organization of i<ic- Ci_rcles a_md soIid_Iines correspond to the direct numerical

flux creep. As a direct cons,eque’nce of this condition it isanOI semianalytical solutions, respectively, forting,) =2.8, 7.4,
e . . d 14.3.

worth mentioning the following: If the dependenceldbn | an

andB has the formUxf[j.(B)/j], wheref is an arbitrary

function, then the spatial constancydfresults in establish-

Above, we have considered onjly=const. However, the
field dependence of the critical currept=j.(B), does not

U(H,t)/kT—In(U+Uy,)

ing of a “partial” critical staté? with j«j.(B). For instance, Adou[1+(2a/3u)A]

if the critical current obeys the Kim dependen¢gB) =InH+Int+In 0 > ,
=joBo/(Bo+B), then the field profileB(x) during the re- 2mnd°KT

laxation should be determined by the conditiop (38)

=pjoBo/(Bgt+B) with 0<p<1.

However, for more complicated dependenciedJoén B where the last term in E¢38) almost does not depend éh

andj this is not the case, and the profilB¢x) can differ andt. This means that the magnetization curve is determined

significantly from that in the critical state. In the next section by
we consider an example of such a behavior. du du dH

IV. SEMIANALYTICAL SOLUTIONS FOR ANOMALOUS kT U+l H
MAGNETIZATION (FISHTAIL ) In Fig. 7 we present the results of our semianalytical ap-
. ) proach to the problem of dynamic fishtail formation taking
Equatl'on(35) gnd its _reduce_d form_&ee Eqs_.(29) and i«(B)=joB./(B.+B) (Kim mode) and collective creep
(33)], which are just ordinary differential equations, present;ii,
the method of semianalytical integration of the equation for
flux motion [see Eq.(10)], for the case of collective creep,
where the dependence bf on B and] is described by Eq. U(B,j)=Uq(B/H*)*
(34), or by its reduced versions. Of course an analogous so-
lution can be found for any (B, ])-dependence, not only for The last factor in this equation is added to cancel the depen-
that described by Eq34). This semianalytical approach pro- dence ofj, on B. This means that we are using a model for
vides a good fit to the exact solution, obtained by numericalJ(B,]), where the conditiotJ =0 provides the Kim profile
integration of Eq(10), as one can see in Fig. 6. The correc-for j.(B) (initial stage of creepand, on the other side)
tion factor 1+ (2a/3u)A can be neglected except for short «B“j~# for j<j., as predicted by the collective creep
timest=7/Apu. theory? Then at eact we find the energy down to where
The semianalytical solutions can be applied for the dethe system relaxes during the “experimental” time window
scription of an anomalous magnetization, coined a “fish-t, and then, using thi¥), we determine the corresponding
tail,” found in clean HTSCS® Note thatj. enters Eq(35) jx=+g according to Eq(40). The results show a clear fishtail
only via the correction factor which is negligible in most due to fast relaxation at low fieldsee Fig. 7.
cases, especially at high fieltls>H* whereA<1. Thus the Note that Eq(40) provides an example of the case where
solutionU(t) of Eg. (35) is determined by the current expo- the field profilesB(x) are significantly different from the
nent u (and not by the field oney), by the characteristic critical one atj=j., and a “partial critical state? is not
energyU., and byr (which in turn depends od, 7, and established.
H). If one measures the magnetization curreat the edge SincedU=(dU/dH)dH+ (dU/9j)d], one obtains using
of the sample, wher&(B,j)=U(H,j) as a function oH,  Eq.(39) that the magnetization curv@shtail is determined
keeping the time window of the experiment constant for by the condition:
eachH (this is the case for most studies of fishtgilhenU )
along the measured lin® (H) or j(H) can be written, as dj (U kT U+Uc )(au

-1
follows from Eq.(36), as dH  \oH H U+U.—KT W) ' (42)

(39

M "

B.+B
. (40)

io(B)
j
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For the case of collective creep, whedecH®j ~#, we have
dU/dH=(a/H)U anddU/g9j=—(u/j)U. Then, taking into
account that + U .>kT, we get

(1_

The peak of the fishtail, wherjdH) reaches maximum, cor-
responds tdJ=kT/«, as follows from Eq.(42). This im-
plies that increases as a function bf until it almost reaches
the j.(H) curve. Far belowj., wherekT/aU<1, one gets
from Eq. (42) that jocH»,

We see from Eq9:38) and(39) thatU changes along the
magnetization curve obtained at a fixed time windowow-
ever, one can measulg;(H) keeping the producHt as
constant, which, according to E¢36), should result in a
constantU along the magnetization curveeglecting the
correction factor ¥ (2«/3u)A]. The differencejy(H)
—j(H), wherej(H) is taken att=const, is determined by

1 KT

a U

dj _a ]
dH™ uH

(42

diim—i)_ kT
dH

= H(aUldj)"

(43

which provides a tool for
U(j)-curve.
Above in this section we have considered the exponents

and u to be constants. However, different regions in fhe

independent analysis of

—H diagram correspond to different relaxation regimes,

such as single vortex creep, small and large bundle cree
etc. (see Refs. 2-4 The energy scal&J,, as well as the
exponentse and u may vary significantly from one region
of j —H to another. As one observes from Eg6), the cru-
cial exponent of the above two js. Its rapid change at the
boundary between the creep regions frqm to u, is
equivalent to a change df by factor u,/u,. As follows
from Eq. (38), this results in a change ofIn(u,/u,) in
U/KT at the boundary between two creep regions. Thus
does not change much at the crossover from one pinnin
regime to another. Howevey, (and, in turn,M) can be

changed significantly at such a boundary, since for differentt

relaxation laws(different U,, «, and u) the sameU is
reached at significantly differentAs H increases, the grow-

ing vortex bundles lead to increase of characteristic energiege

U., thus one should expect a steplike increasg wfhen
crossing the boundariesingle vortex pinning-small
bundles—large bundles

If one measures the exponeantalong the magnetization
curve(see, for instance, Ref),then a curve of constaktin
the H—j diagram can be plotted using rather(uH) !
instead oft«H 1, as was suggested above.

V. RELAXATION IN THE REMANENT STATE AND
ANNIHILATION LINES
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0.5
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FIG. 8. Spatial dependencies of the magnetic inductidn
(squarey vortex velocityv (circles, and the magnetic currei
=Bu (triangles found numerically from Eq(11) near the sample
edgex=d. The fits areBe\1—x/d andv«1/{1—x/d. Note that
D shows no peculiarity at=d.

not valid in this case, at least in the vicinity of the annihila-
tion lines(see comment at the end of Seg. Therefore, this
case should be studied separately.

Consider the simplest situation of remanent relaxation,
where the field has been ramped up and then instantaneously
removed, s@=0 at the edges= *d of the slab. There are
no antivortices in this case, since the annihilation line coin-
cides with the edge of the sample.

The description of the flux motion in this case using Eq.
(3) looks self-contradictory since at the sample e@ge0,
whereas the magnetic flux curreBt=Buv is finite at the
@’dges and, moreover, obviously should reach there its maxi-
mal value over the sample. However, the contradiction is
void provided the field vanishes at the sample edgeBas
«/d—x, i.e., proportional to the square root of the distance
to the edgdsee Fig. 8 At the same time the vortex velocity
diverges at the sample edge as dB/dxo1/\/d—x. This
divergency is removed by an appropriate cutoff &b x,
which we discuss later in this section, but inevitably leads to
the appearance of the flux-flow region near the edge or, most
8enerally, near the annihilation line. Howeveb
B(9B/dx) remains finite and continuous with no singular-
ity at the edge. This is confirmed by direct numerical solu-
tion of the relaxation in the remanent stdsee Fig. 8.

Let us estimate the coefficiektin the square-root depen-
nceBegge=kyd—x near the sample edge, which should
include the flux flow regiotJ = 0. The magnetic flux current
reaches atx=d its maximum over the sampleD,_4

= (¢ol4mn)[BIBIIX]y_.q= Pok?/8mn, but remains of the
same order as the mean flux curr¢Bt) over the sample:
D,—4=C(D), whereC=1 is a numerical factor. Estimating
(D)= (Adol4mn)(B)(dBIix)exp(—(U)KT), (B)=B(0)/2,
(9Blax)y=B(0)/d, one getsk=B(0)+/CA exp(—(U)/KT)/d.
Note that the above estimation is based on the constancy of
U, i.e.,,U=(U) throughout the sample except the edge flux-
flow regions, which we assume to be small. Thus we get

o

A particular and very interesting case, where the dis-
cussed above self-organization of the flux motion should be
modified significantly, is relaxation in the presence of anni-
hilation linesB=0. The vortices and antivortices approach
the annihilation line from different sides and annihilate each A natural cutoff for the area of applicability of E(44) is
other. The arguments of Sec. Il for the constancyJofire = d—x>\, otherwise the surface effects such as Bean-

d—x
Bedgd X)=B(0) \/CA exp(—(U)KT) 4 (44)
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U/KT

counted for. There are additional restrictiofig:the current 251
cannot exceed the depairing one: (c/47)dB/x<jq4; and 20
the distance to the surfaak-x at anyx. It can be easily
confirmed that the conditiod—x>N\ is stronger than the
Let us call the regiorx<|x|<d near the sample edges, 5f
where the activation energy grows froth=0 at the very
“annihilation dominated” organization of flux creep. Its x/d
width d—X can be estimated as follows: We substitute Eq.
(34), and findx whereU reaches its mean valg®). This is 10} b 1
of course a crude approximation, since E4g) is valid in

Livingston interaction with the surfaée should be ac- 'a ' ' ' '
/\

(i) the intervortex distanca= /¢, /B(x) should not exceed ol /\ |

other two at most reasonable valuesBfD) andd. 10r % ]

edge (flux-flow region up to U(?()E(U), as the area of -1.0 0.5 0.0 0.5 1.0

(44) into the collective creep formula fdd(B,j), see Eq.

the flux-flow region only, and for the whole “annihilation

dominated” region it provides an underestimation Band, '_\Q
in turn, j. After straightforward calculations we get 35 5 7
d=X _ ()| fa=p (V) 45 oL\
@ g, s e S E (45) 10  -05 0.0 05 10
x/d
15

The above result implies that the width-x of the “an-
nihilation dominated” region is crucially dependent upon the
relationship between the exponemntsand u. For u>a and 10+
(U)>KT this region appears to be exponentially small, i.e.,

x=d. Computer simulations show a steplike increasd @it

the edge to the value comparable witb), and thenU
grows smoothly and slowly towards the center of the sample
[see Fig. 9a)]. Though U appears to be significantly
greater than for the case of finité, discussed in previous oLd . . . !
sections, even herd) does not vary significantly:sU -1.0 05 0.0 0.5 1.0
=<4KT in the whole sample, excluding the sharp step at the x/d

edge. For the opposite case< a, one finds from Eq(45)

the unphysical result thatd¢-x)/d is exponentially large

though, of course,d—x)/d<1 anyway. This implies that
our assumption about the spatial constancyUgk)=(U) ) ) _ o
throughout almost the whole sampiexcept small edge re- should r_10t bg mlxed with theelf-organized criticalityof
gions is self-contradictory in this case. Thus far< @ the ~ fluX motion atj=j. _ _

effect of the annihilation line spreads over the whole sample, FOr U independent oB, i.e., U=U(j), we restore the
and there is not any evidence of constancylbfThis is known result of straightnesg £ const) of the f|eId_prof|Ies
confirmed by numerical simulationsee Fig. ®)]. The throughout the sample. For the case whdressentially de-

boundary case, where=aq, is illustrated in Fig. €). pends onB the condition of spatial constancy &f(B,j)
determines the one-parameter family of field profikgx)

and enables us to find a semianalytical solutionfét) and,

in turn, for time evolution of the field profileB(x), i.e., to

solve the creep problem completely. Such a semianalytical
We considered the generalization of the logarithmic solu-solution provides a perfect fit to the exact numerical solution

tion of Eq. (1) for flux creep at different dependencies of the (obtained without any assumptions on constancydfand

activation energyJ on field B and currenf and confirmed it appears to be quite useful for the description of the dynamic

by numerical analysis. The general condition which governsievelopment of anomalous magnetizati@ishtail) due to

the relaxation isU(x)=const throughout the sample, and fast relaxation rates at low fields.

this result holds at any particul&f(B,j)-dependence. This The effect of the annihilation line8=0 on the self-

results from aself-organizationof flux creep in the under- organization of the collective creep wheexB*j™# [see

critical statej <., which implies that the influence of all the Eq. (34)] is crucially dependent on the relationship between

creep parameter®, j, andU, on the relaxation rate should a andu. At a<u the effect is just an increase of variation

be of the same order of magnitude. This self-organizationrU over the sample, with a steplike vanishing Wfin the

U/KT

FIG. 9. The profiles of activation enerdy/kT in the remanent
state:(a) =0.1, u=1; (b) «=1.5, u=0.5; (c) a=1, u=1.

VI. CONCLUSION
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